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Abstract. In the CADDementia challenge, algorithms for computer-
aided diagnosis of dementia based on structural MRI were objectively
compared using a previously unseen multicenter data set. In this work,
we present our submission to this challenge. Our algorithm computed
features based on voxel-based morphometry. We used a linear support
vector machine classifier for classification. For training, we used 509 scans
of Alzheimer’s disease patients, patients with mild cognitive impairment
and healthy controls from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database. The tuning and validation of the algorithms
was performed on the 30 subjects from the CADDementia training set.
We evaluated eight variations to our algorithm that included confounder
correction and prior optimization. On the training set, the best per-
forming algorithm yielded an accuracy of 66.7% and and area under the
receiver-operating-characteristic curve of 72.0% percent. Finally, five of
those eight algorithms were selected to be submitted to the challenge.

1 Introduction

Computer-aided diagnosis of neurodegenerative diseases is an emerging research
field in which machine learning approaches are used to distinguish for example
Alzheimer’s disease (AD) patients from normal (CN) controls [1]. Although in
the literature very promising results of algorithms for computer-aided diagnosis
of AD and mild cognitive impairment (MCI) have been reported, they are diffi-
cult to compare as different data sets and methodology were used for evaluation.
In addition, it is unclear how such algorithms would generalize to new data, and
thus, how they would perform in clinical practice when the algorithm cannot be
adapted completely to a specific data set. For these reasons, the challenge on
Computer-Aided Diagnosis of Dementia based on Structural MRI (CADDemen-
tia)5 was initiated.

In this paper, we describe the algorithm that we submitted to the CADDe-
mentia challenge. The image processing and classification pipeline was based on

5 http://caddementia.grand-challenge.org



that of Bron et al. [2]. We trained our algorithms on data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and on the 30 training subjects pro-
vided by CADDementia. The method was tuned on the 30 training sets by
training the algorithms on the ADNI data. Five variations to the algorithm were
applied to the CADDementia test set. Some additions to the previously published
methods were made. First, CADDementia addresses multi-class classification of
AD, MCI and CN, so in this work we combine the pairwise predictions of these
classes to make a final prediction. Second, as the subjects in the CADDemen-
tia data set are younger than those from ADNI, we incorporated confounder
correction. Third, priors were optimized on the training set.

2 Methods

2.1 Data

The data used in this work is made public by the CADDementia challenge. This
multi-center data set was composed consisting of imaging data of 384 subjects
from three medical centers: VU University Medical Center (VUMC), Amster-
dam, the Netherlands; Erasmus MC (EMC), Rotterdam, the Netherlands; Uni-
versity of Porto / Hospital de São João (UP), Porto, Portugal. The data set
contained structural T1-weighted MRI (T1w) scans of patients with the diag-
nosis of probable AD, patients with the diagnosis of MCI, and CN without a
dementia syndrome. In addition to the MR scans, the data set included demo-
graphic information (age, gender) and information on which institute the data
came from. Within the three centers, the data sets of the three classes had a sim-
ilar age and gender distribution. Of these 384 subjects, 30 were used for training
and tuning the methods. This training set consisted of 9 AD patients (3 male,
66.1± 5.2 yrs), 9 MCI patients (5 male, 68.0± 8.5 yrs), and 12 controls (9 male,
62.5±6.1 yrs). For the other 354 subjects the labels were kept secret, these were
used as test set (213 male, 65.1± 7.8 yrs).

For training, data from the ADNI was used in addition. The cohort is adopted
from [3] and consists of AD patients, MCI patients that converted to AD within
18 months (MCIc), MCI patients that did not convert to AD within 18 months
(MCInc), and CN. The participants were 137 AD patients (67 male, age: 76.0±
7.3 yrs, MMSE: 23.2±2.0), 210 MCI (127 male, 74.5±7.3 yrs, MMSE: 26.9±1.8),
and 162 CN (76 male, 76.3 ± 5.4 yrs, MMSE: 29.2 ± 1.0). T1w imaging was
acquired at 1.5T with a voxel size of ∼1mm3 [4].

2.2 Image Processing

Probabilistic tissue segmentations were obtained for white matter (WM), gray
matter (GM) and cerebrospinal fluid (CSF) on the T1w image using the uni-
fied tissue segmentation method [5] of SPM8 (Statistical Parametric Mapping,
London, UK).



For construction of a template space, the coordinate transformations from
the template space to the subject’s space were derived from pairwise image regis-
tration [6] of a subset of 150 T1w images (81 CN, 69 AD [3]). We performed pair-
wise registrations with consecutively a rigid (including isotropic scaling), affine,
and non-rigid B-spline transformation model. The non-rigid B-spline registra-
tion used a three-level multi-resolution framework with isotropic control-point
spacing of 24, 12, and 6 mm at the three resolutions respectively. A template im-
age was created by averaging the deformed individual images. To transform the
other subjects’ images to template space, coordinate transformations were de-
rived from pairwise registrations to the subset. The registrations to the template
space were visually inspected to check if they were correct.

For computation of intracranial volume, a brain mask was constructed using
a multi-atlas segmentation approach. We performed brain extraction [7] on the
T1w images associated with a set of 30 atlases [8, 9], checked the brain extractions
visually, and adjusted extraction parameters if needed. The T1w images of the
atlases were registered to the subjects T1w image using a rigid, affine, and non-
rigid B-spline transformation model consecutively. Registration was performed
by maximization of mutual information [10] within dilated brain masks [7]. For
initialization, the dilated brain masks were rigidly registered. For non-rigid reg-
istration, the same multi-resolution settings were used as in the template-space
construction. The subjects T1w images were corrected for inhomogeneities to
improve registrations [11]. To make a brain mask for each subject, the extracted
brains of the atlases were transformed to each subjects T1w image and the labels
were fused using a majority voting algorithm [12].

2.3 Classification

For classification, linear SVM classifiers [13] were applied using the LibSVM
software package [14]. The features were based on voxel-based morphometry,
which means that we use GM probabilistic segmentations in the template space
that are modulated by the Jacobian determinant of the deformation field to take
account of compression and expansion [5]. To correct for head size, the features
were divided by intracranial volume (ICV). The features were normalized to zero
mean and unit variance. Pairwise classifications were performed in the following
settings: AD/CN, AD/MCI, and MCI/CN. For making the three-class classifica-
tion of CN, MCI and AD, the output probabilities of the pairwise classification
were multiplied and normalized [15].

2.4 Optimization for CADDementia

The original method [2], as described above, divides all features by the ICV to
correct for head size. We also tried classification without ICV correction.

Because the ADNI subjects were on average 10 years older than those of
the CADDementia dataset, confounder correction was introduced. For this, we
used the method proposed by Abdulkadir et al. [16]. Using kernel regression,
the confounding effect of age, sex, and optionally also ICV were removed from



the kernel matrix. This kernel matrix is the linear kernel which is used as input
for the SVM classifier and is the dot-product matrix of the feature values. This
kernel matrix K ∈ R

N×N is corrected for the confounding effects using the
following equation:

K̃ = RKR
T
, R = I −X(XT

X)−1
X

T
, (1)

in which I is the identity matrix and X ∈ R
N×ais the matrix with the con-

founders for N subjects [16]. As confounders, we used: 1) age and sex (a = 2),
and 2) age, sex and ICV (a = 3).

For the CADDementia test set, the exact numbers of subject in each class
were not given. The data users only knew that priors were roughly equal for all
classes. For the training set, the priors were not exactly equal for the classes:
pCN = 1.2, pMCI = 0.9, and pAD = 0.9. To take this into account as an ad-
ditional option, the output probabilities of all classifications were multiplied by
these priors.

For evaluation on the training set, only the ADNI data was used for training
the classifier. For the algorithms that were submitted to the challenge for classi-
fication of the test set, training was performed on both the ADNI data and the
30 training subjects.

2.5 Evaluation

Evaluation was performed according to the protocol specified by the CAD-
Dementia challenge. The Python scripts that we used for evaluation can be
downloaded from the challenge web site6. The performance of the algorithms
was quantified by the classification accuracy and the area under the receiver-
operating characteristic (ROC) curve (AUC). Confidence intervals on the ac-
curacy and AUC were determined with bootstrapping on the test set (1000
resamples). The performance was evaluated on the 30 training subjects.

2.6 Detailed explanation and scripts

A detailed step-by-step guide of the used methodology is available on the CAD-
Dementia wiki7. The used scripts are also available8.

3 Results

Table 1 reports the accuracy and AUC for the variations to the algorithm on the
training set. The confusion matrix for all eight evaluated methods are shown in
Table 2. The original method and the method without ICV correction yielded
the same performance (accuracy=50%, AUC=77.8%). Correction for confound-
ing effects improved the accuracy, but reduced AUC. The performance on the

6 http://caddementia.grand-challenge.org
7 http://wiki.caddementia.bigr.nl/index.php/Bron et al.
8 https://bitbucket.org/bigr erasmusmc/bron iris pipeline adni



training set improved by taking the optimized priors (pCN = 1.2, pMCI = 0.9,
and pAD = 0.9) into account. The best accuracy was obtained by the algorithm
with confounder correction for age, sex and ICV using the optimized priors.
For this method (age-sex-icv-op), the accuracy is 66.7 % and the AUC 72.0%.
The best AUC, 78.4 %, is obtained by the original method and by the method
without ICV correction, both with the optimized priors. Figure 1 shows the
ROC curves for the original method and for the method with the highest accu-
racy (age-sex-icv-op). The estimated computation time was about 4 hours per
subject for image processing and a few minutes for classification.

Table 1. Performance on the train set, accuracy and area under the ROC-curve (AUC).
OP denotes the optimized priors for the training set: pCN = 1.2, pMCI = 0.9, and
pAD = 0.9. CI = 95% confidence interval estimated with bootstrapping. The five
methods in bold are submitted to the challenge to be applied to the test set.

Methods Code Accuracy (CI) [%] AUC (CI) [%]

Original method [2] original 50.0 (30.0 - 66.7) 77.8 (66.9 - 88.2)
Original method, OP original-op 60.0 (36.7 - 73.3) 78.4 (67.4 - 88.8)
No ICV correction noicv 50.0 (30.0 - 66.7) 77.8 (66.9 - 88.2)
No ICV correction, OP noicv-op 60.0 (36.7 - 73.3) 78.4 (67.7 - 88.8)
Age and sex as confounders age-sex 60.0 (40.0 - 73.3) 71.9 (55.3 - 86.1)
Age and sex as confounders, OP age-sex-op 63.3 (43.3 - 76.7) 72.4 (57.3 - 85.0)
Age, sex, ICV as confounders age-sex-icv 63.3 (43.3 - 76.7) 71.6 (52.8 - 86.1)
Age, sex, ICV as confounders, OP age-sex-icv-op 66.7 (46.7 - 80.0) 72.0 (54.1 - 85.6)
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Fig. 1. The receiver-operating-characteristic (ROC) curves on the 30 training sets for
two of the evaluated algorithms: (a) the original method, Original, and (b) the method
with confounder correction for age, sex and ICV and optimized priors, Age-sex-icv-op.
The area-under-the-ROC-curve (AUC) values are shown for every per-class ROC curve.



Table 2. The confusion matrices for the algorithms performance on the training set
(n=30). The algorithms printed in bold were submitted for testing on the CADDemen-
tia test set.

original True class
CN MCI AD

CN 6 2 0
Hypothesized class MCI 6 4 4

AD 0 3 5

noicv True class
CN MCI AD

CN 6 2 0
Hypothesized class MCI 6 4 4

AD 0 3 5

age-sex True class
CN MCI AD

CN 8 3 1
Hypothesized class MCI 1 2 0

AD 3 4 8

age-sex-icv True class
CN MCI AD

CN 8 4 0
Hypothesized class MCI 2 3 1

AD 2 2 8

original-op True class
CN MCI AD

CN 10 3 2
Hypothesized class MCI 2 3 2

AD 0 3 5

noicv-op True class
CN MCI AD

CN 10 3 2
Hypothesized class MCI 2 3 2

AD 0 3 5

age-sex-op True class
CN MCI AD

CN 11 6 3
Hypothesized class MCI 0 2 0

AD 1 1 6

age-sex-icv-op True class
CN MCI AD

CN 12 7 3
Hypothesized class MCI 0 2 0

AD 0 0 6

4 Conclusion and Discussion

The algorithms in this work are based on [2] but adapted to multi-class classifi-
cation of AD, MCI and CN. The original algorithm for voxel-based classification
yielded an accuracy of 50.0% and an AUC of 77.8% on the training set. The
methodological changes introduced in this work, confounder correction and prior
optimization on the training set, improved accuracies on the training set, but
reduced AUC.

Based on these performances, five algorithms were chosen to be evaluated
on the CADDementia test, marked with bold font in Table 1. First, we chose
the original method (original). In addition, four other methods with the high-
est accuracies on the training set were chosen. These were the algorithms that
corrected for confounding effects: age-sex (accuracy=60.0%), age-sex-op (accu-
racy=63.3%), age-sex-icv (accuracy=63.3%), and age-sex-icv-op (accuracy=66.7%).

It should be noted that the authors of this work are the organizers of the
CADDementia challenge. Therefore, the performance of our algorithms on the
test set is listed on the web site, but will not be included in the official ranking
of the CADDementia challenge.
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