3D convolutional network for automated prostate segmentation on MR images

Adèle Courot
student of Ecole Polytechnique

October 16, 2017

Abstract
Prostate segmentation is a challenging task because of the large variations of shapes and texture of the organ. We proposed a method based on a 3D deep neural network. The segmentation is performed by a fully convolutional network, in one forward pass.

1 Introduction
Accurate segmentation of prostate from MR exams would be a great help in the diagnosis of diseases as for instance prostate cancer. In the following will be given a dry description of our methods, a more complete comparison with the state of the art is ongoing.

2 Methods

2.1 Data preprocessing
The following preprocessing steps are applied before giving a volume to the network:

- Resolution normalization
- Intensity distribution normalization
- Cropping if the volume above a maximum size (for memory issues)

2.2 Network architecture
The network used is the variation of the volumetric ConvNets with mixed residual connections (cf [6]), without the intermediary predictions and with a smaller number of filters. We used 4 layers \((\text{id est} 3 \text{ max pooling layers})\), with 32 filters on the first layer. Convolutional filters were 3*3*3.

2.3 Training
We kept 20\% of the training set as for the validation. We trained the network on full preprocessed volumes, one at each iteration (for memory issues), without augmentation.

3 Results
We obtained a mean Dice of 85.9 on the testing set, compared to 92.0 on the training set.
References

[3] Olaf Ronneberger, Philipp Fischer, Thomas Brox: U-Net: Convolutional Networks for Biomedical Image Segmentation Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany, 2015

[9] Simon Kohl, David Bonekamp, Heinz-Peter Schlemmer, Kaneschka Yaqubi, Markus Hohenfellner, Boris Hadachsk, Jan-Philipp Radtke, Klaus Maier-Hein: Adversarial Networks for the Detection of Aggressive Prostate Cancer 2017

